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Abstract 

The theory of thermoelastic materials undergoing solid-solid phase 
transformations requires constitutive information that governs the 
evolution of a phase boundary. This is known as a kinetic relation 
which relates a driving traction to the speed of propagation of a phase 
boundary. The kinetic relation is prescribed in the theory from the 
onset. Here, though, a special kinetic relation is derived from an 
augmented theory that includes viscous, strain gradient and heat con- 
duction effects. Based on a special class of solutions, namely traveling 
waves, the kinetic relation is inherited from the augmented theory as 
the viscosity, strain gradient and heat conductivity are removed by a 
suitable limit process. 



1    Introduction 

Materials can exist in different solid phases which are characterized, at a 

microscopic level, by their underlying crystalline structure. A change in 

temperature, stress or other variables can induce a material to change from 

one solid phase to another. Phase changes are usually classified according to 

the main mechanism driving the transformation, viz., by diffusion of chemical 

species or by displacement, although these are not mutually exclusive (see 

CHRISTIAN [8]). The present work deals with the latter type in which the 

transition from one phase to another is characterized by a sudden change in 

the crystalline lattice, achieved without diffusion but rather via a cooperative 

movement of atoms. 

Inside a body, the interface between two distinct phases, known as a 

phase boundary, can be modeled as a surface of zero thickness across which 

the displacement is continuous but the deformation gradient suffers a jump. 

Other models, related to the Landau-Ginzburg theory, consider the interface 

as a transition layer of small but finite thickness where the deformation gra- 

dient varies rapidly but continuously (see, e.g., ERICKSEN [13], PENROSE &; 

FIFE [21], TRUSKINOVSKY [27]). Implicit in the term "small" is the idea 

that the model has some kind of length scale. Some related theories that 

incorporate separate balance principles associated with the motion of mate- 

rial particles and the motion of the phase boundary have also been proposed 

(see, FRIED & GURTIN [15], LUSK [19]). 

Within the framework of classical thermoelasticity theory, the thermo- 

mechanical properties of a material can be described by a Helmholtz free 

energy density that depends smoothly on the deformation gradient and the 



temperature. In order to model a material that can exist in different solid 

phases—and hence analyze phase transitions—the Helmholtz potential, at 

some temperatures, exhibits multiple wells. Each well is associated to a dis- 

tinct solid phase. The nonconvexity of the potential allows the existence of 

weak solutions to dynamic problems. The solutions involve shock waves— 

across which the deformation gradient is discontinuous but the material on 

each side of the surface of discontinuity is in the same phase—and propagat- 

ing phase boundaries if on each side the material phases are different. 

Phase transformations in solids have been studied in recent papers by 

ABEYARATNE &: KNOWLES [1, 3, 4, 5]. In particular, [5] deals with the 

adiabatic theory for a propagating phase boundary in a one-dimensional 

thermoelastic solid where an initial value problem of the Riemann type is 

analyzed. The phase boundary is modeled as a sharp interface. It is found 

that the solution to the Riemann problem is not unique. In order to recover 

uniqueness, Abeyaratne and Knowles propose the existence of an additional 

piece of constitutive information, a kinetic relation, which restricts the mo- 

bility of the phase boundary and singles out a unique solution for the Rie- 

mann problem. Following Onsager's formalism in thermodynamics (see, e.g., 

CALLEN [6], TRUESDELL [26]), the kinetic relation relates a driving traction 

(associated with a jump in entropy) to the speed of propagation of the phase 

boundary and to a state parameter, namely the temperature. In the sharp 

interface theory, the kinetic relation is introduced from the onset. 

The purpose of the present analysis is to derive a special kinetic relation 

from an admissibility criterion related to a traveling wave problem in which 

an augmented theory is used. In the augmented (or regularized) theory, the 



sharp discontinuities are replaced by transition layers of finite thickness. By 

introducing dissipation and dispersion mechanisms associated with higher 

order derivatives of the strain (viscosity and strain gradient in this case), the 

phase boundary acquires a structure, i.e., it is possible to simulate a region 

where the strain varies rapidly but continuously. The augmented theory also 

includes heat conduction in order to have a continuously varying temperature 

across the transition layer. In a sense, the sharp interface theory should 

be obtained from the augmented theory through a suitable limit process 

where the dissipation and dispersion mechanisms and the heat conduction 

are removed. 

In Section 2, the basic field equations and jump conditions are derived for 

the sharp interface theory and the results are specialized using a model for a 

thermoelastic material proposed in [3]. In Section 3, an augmented theory is 

introduced. Some general features of solutions to the traveling wave problem 

are derived in Section 4. It is also shown that the admissibility criterion for 

the existence of a subsonic traveling wave in the augmented theory provides 

an additional restriction on the data that can be cast as a kinetic relation. 



2    Sharp interface theory: adiabatic case 

2.1    Basic equations. 

Consider a bar that occupies the interval [—L, L] in a reference configuration. 

Consider longitudinal motions of the bar during a time interval [t0, h]. Points 

in the reference configuration are denoted by (x, t) G [-L, L] x [*o> *i]- Assume 

that the particle x is mapped to the position y(x, t) at time t, (i.e., y(x, t) = 

x+u(x, i), where u is the displacement); assume that u G C°([—L, L] x [t0, h]) 

and piecewise C2([-L,L] x [t0,*i])- Let 7 = ux and v = ut be the strain 

and particle velocity (the subscript refers to partial differentiation). The 

restriction —1 < 7(x, t) , Vz, t, guarantees that the deformation y(x, t) is one- 

to-one. Let p be the referential mass density (assumed to be independent 

of x), a the stress, e the internal energy per unit mass and 77 the entropy. 

Assume that a, e and 7/ are piecewise Cx([—L, L] x [ioj^i])- The balance 

of linear momentum, balance of energy and the Clausius-Duhem inequality 

(dissipation inequality) for an adiabatic thermomechanical process in a one- 

dimensional bar are 

"£=!£ 
12 

pvdx , (1) 

[«E-!jT,(«+i")*, 0> 
d    fX2 

T{t) = d~tj     ^X-°' (3) 

Vt G [t0, ti] and V[xi, x2] C [-L, L]. Here, T(t) is the entropy production rate 

in the interval [xi,x2]. The local versions of (1), (2) and (3) at points where 



a, v, 7, e and rj are smooth are 

ox = pvt , (4) 

(av)x = p(e+±v2j   , (5) 

Vt>0. (6) 

The compatibility equation is 

vx = It ■ (7) 

Equation (5), with the use of (4), can be expressed as 

ajt = pet ■ (8) 

Let x = s(t) be a point in \x\, x2] across which some (or all) of the fields are 

discontinuous. Localization at x = s(t) of the compatibility equation (7) and 

the global balances (l)-(3) provide the corresponding jump conditions, viz., 

M + «[7]=0, (9) 

[a]+ps[v]=0, (10) 

lav]+ps{e + ^v2]=0, (11) 

lv¥ < 0 , (12) 

where s = ds/dt is the speed of propagation of the discontinuity and, for 

any function g, {gj = g+ - g~ and g± = \imx^s(t)± g(x,t). The superscript 



refers to one side of the moving discontinuity as follows: the "+" ("—") side 

is the front (back) state if s > 0 or the back (front) state if s < 0. Moving 

discontinuities are said to be compressive if the strain in the front state is 

higher than in the back state and expansive otherwise. The velocity jump 

can be eliminated from (10) by using (9), i.e., 

H=ps2[7]. (13) 

Similarly, (11), with the use of (9) and (10), can also be expressed as 

(p[e] - (a)[i\)8 = 0 , (14) 

where, for any function g, (g) = (l/2)(g+ + g~). 

2.2    Thermoelastic material. 

A thermoelastic material can be characterized by its Helmholtz free energy, 

which is a function of strain and temperature, or by its internal energy, which 

is a function of strain and entropy. It can also be characterized by its Gibb's 

energy or by the enthalpy. One of these potentials is taken as a fundamental 

quantity and the others can be obtained from it via various Legendre trans- 

formations. If certain invertibility requirements between variables are met, 

it is possible to express these potentials in terms of any combination of two 

variables. If the strain and the temperature are used as variables, then the 

stress and the entropy are viewed as functions of 7 and 6. As shown in sub- 

sequent sections, for the thermoelastic materials considered here—which are 

capable of phase transformations—the stress ä is not a monotonic function 



of 7 or 9 and the entropy f\ is not a monotonic function of 7. Nevertheless, 

it is assumed that the entropy is a monotonic function of the temperature, 

hence either (7,6) or (7,77) can be used as variables. The following notation 

is employed: a function of strain and temperature is denoted as g and a func- 

tion of strain and entropy is denoted as g. Throughout the present analysis, 

the preferred variables are 7 and 6. Let the Helmholtz potential be given by 

ip = ^(7,6). This potential is related to the internal energy through 

ip = e - 6rj . (15) 

For a classical thermoelastic material, the stress a and the entropy 77 are 

given by 

<7 = ä(7,0) = ^7(7,0), (16) 

v = 77(7,0) = -M-y, o). (17) 

The isothermal elastic modulus /J, the specific heat at constant strain c and 

the coefficient of thermal expansion a are defined by 

ß = f»p11,    c = -9'ipe6,    ä = -y£. (18) 



Alternatively, one can introduce the modified1 Grüneisen coefficient defined, 

in terms of the above quantities, as 

G=i^ = ^. (19) 
Oipog      pc 

As a fundamental assumption, only materials with positive specific heat at 

constant strain and positive coefficient of thermal expansion are considered, 

i.e., V(7,0) c(7,ö) > 0. Hence, it is assumed that G(7,0) > 0. Moreover, 

since 0 > 0 and by (18)2, then 77 is a strictly increasing function of 9. Thus, 

it is possible to define an inverse function 9 — 0(7,77). The natural variables 

for the internal energy are 7 and 77. From equation (15), in terms of the 

Helmholtz potential, I is given by 

e~(7, rj) = ^(7, ö(7,77)) + 0(7,77)77 . (20) 

Therefore, from (16) and (20), the stress can also be expressed as a function 

of 7 and 77, i.e., a = ä(-y,ri) = pe7(7,77). Similarly, the temperature is 

given by 9 = 0(7,77) = ^(7,77). The isentropic elastic modulus /xe is defined 

as ße = pe77. Henceforth, though, from the invertibility of 77 and 0, the 

internal energy e is to be considered as given by a function I of 7 and 0, i.e., 

e = e(<y, 9) = e(j, 77(7,0)). In terms of 7 and 0, the isentropic elastic modulus 

ße can be expressed as 

»>=p{    *.     I- (21) 

J
The Grüneisen coefficient is usually denned as (1 + f)G, where G is given by (19). It 

turns out that (19) is a more convenient parameter. See CLIFTON [9]. 



The isothermal and the isentropic sound speeds, a and ae, are defined, when 

H, ße > 0, by 

fß - i% (nr>s a=\  —,        ae = *  —. (22) 
V P V P 

Using the material parameters defined by (18), it follows from (21) and (22) 

that the sound speeds are related by 

al = a2(l + ^-e)  ; (23) 

hence, if ß, ße > 0 and since c > 0, then a2
e > a2. In the adiabatic the- 

ory, discontinuities are classified into two types, viz., shock waves and phase 

boundaries. Shock waves are related to a discontinuity where the material on 

each side is in the same phase. A phase boundary refers to the case where 

different material phases exist on each side of a propagating discontinuity. 

Moreover, a shock wave whose Lagrangian velocity s is zero is referred to as a 

contact discontinuity and a phase boundary with s = 0 is called a stationary 

phase boundary. 

Some authors define shock waves as traveling discontinuities that satisfy 

the so-called subsonic-supersonic condition regardless of the phases on each 

side of the discontinuity. The subsonic-supersonic condition asserts that s is 

bounded below by the isentropic sound speed of its front state and bounded 

above by the isentropic sound speed of its back state (see DUNN &; Fos- 

DICK [11], TRUSKINOVSKY [27]). For a material with a nonconvex Helmholtz 

energy, it is possible to have moving discontinuities where the phases in the 

front and the back are different but the speed of propagation satisfies the 

10 



subsonic-supersonic condition. Here, though, those discontinuities will be 

referred to as supersonic phase boundaries. TRUSKINOVSKY [27] refers to 

subsonic phase boundaries as kinks. It will be shown that only subsonic 

phase boundaries have room for a kinetic relation. 

2.3    Driving traction and kinetic relation. 

Using (15)-(17) in (8) provides an alternative expression for the energy equa- 

tion, i.e., 

Vt = 0. (24) 

It follows that the dissipation inequality (6) is trivially satisfied at regular 

points. The rate of entropy production for a segment [zi,^] of the bar 

which contains a propagating discontinuity at re = s(t) can be expressed as 

T{t) = Tb(t)+Ts{t), where 

rX2 

Tb(t) = /    pntdx ,    Ts(t) = -p[rj\s . (25) 

Here, Yi represents the bulk entropy production and Ts corresponds to the 

entropy production due to the moving discontinuity. Equations (24) and 

(25)i imply that Tb = 0, hence the entropy production for a thermoelastic 

material under an adiabatic process occurs solely because of the presence of 

a moving discontinuity. Based on this entropy production, define the driving 

traction as 

f = -p{vW). (26) 

11 



For a discussion on the notion of driving traction, see ABEYARATNE & 

KNOWLES [1, 4] and TRUSKINOVSKY [27]. For a thermoelastic material, 

(14)-(17) and (26) provide the following equivalent expression for the driving 

traction when s ^ 0 

f = p{M-(h)b]-$oM} • (27) 

In terms of the driving traction, the dissipation inequality (12) can be ex- 

pressed as 

fs > 0 . (28) 

Therefore, the jump conditions are given by (9)-(12) or, equivalently, by (9), 

(13), (14) and (28). For given conditions on one side of the discontinuity, say 

(7+,0+), and for a given speed of propagation s, the set of points (7_,0~) 

that satisfy the jump condition (13) is called the Rayleigh set. Similarly, for 

given conditions (■y+,6+), the set of points (7~,0~) that satisfy the jump 

condition (14) is called the Hugoniot set (see DUNN & FOSDICK [11]). The 

admissible states (7+, 6+) and (7", 9~) are those that belong to the Rayleigh 

and Hugoniot sets generated at either (7+,0+) or (-y~,6~) and also satisfy 

the entropy jump condition (28). In problems of the Riemann type for bars 

made of thermoelastic materials that can undergo phase transformations, the 

jump conditions are not sufficient to fully determine the solution. Additional 

information is provided by the kinetic relation. Following Onsager's approach 

to irreversible thermodynamics, the quantity f/{9) is identified as an affinity 

and s as the corresponding flux (see ABEYARATNE & KNOWLES [1, 4]). The 

12 



kinetic relation is part of the constitutive theory and relates the affinity to 

the flux and to a state parameter, in this case the temperature, i.e., 

■jL = F{s,9), (29) 

where F is a materially-determined function. 

2.4    A specific thermoelastic material. 

In order to obtain results in specific problems, consider a thermoelastic ma- 

terial introduced by ABEYARATNE &; KNOWLES [3]. A phase diagram of 

this material in the 7,0-plane is shown in Figure 1. For temperatures below 

a critical temperature 6c, the material can exist in either a low strain phase 

Pi or a high strain phase P3. These phases are metastable and are separated 

by an unstable phase P2. Above the critical temperature the material can 

only exist in a stable phase P. Throughout this analysis, only transforma- 

tions from or to the low and high strain phases are considered. A thorough 

description of the thermomechanical characteristics of this material can be 

found in [3]. The boundaries between the different phases are given by 

7M(0) = 7C + M(0-0C),    lm(0)=lc + m(d-ec), (30) 

13 



where 7c > 0, 6c > 0, M and m are constants.   The expression for the 

Helmholtz potential is given in each phase by 

'fr-jiV-V-<***{£) inP" 

JL 
2p 

2     7r(7 ~ 7M)
2 

7  
7m-7M 

^(7,0) =< _^7(0 _ ör) _ cß log (1 
t/J1 

inP2, 

f(7-7r)2-^(7-7r)(0-0r) 
2/> p 

-c01ogQ^+^(0-0r) inP3, 

(31) 

where 6T is the transformation temperature, 7r is the transformation strain, 

AT is the latent heat at 9 = 6T and jm = 7m(0), JM = 7M(#)- The re- 

maining parameters were defined in Section 2.2 and are assumed constant. 

It is convenient to introduce a set of nondimensional parameters defined as 

follows: 

T = 
c6 

a27T' 

lr = 

x      1       -        v 
5 = —,    v =  

7r O-IT 

a27r' 
G = GjT, 

s      .,     a27rM 
v = -,     M = , 

a c 
m = 

af~fT™ 

(32) 

The variable 8 might be viewed as a "normalized" strain.  The parameter 

G will also be called the (modified) Grüneisen coefficient.  Nondimensional 

14 



internal energy e, stress r and entropy s are defined as 

e = 
a27r ' 

a _ 7? 

paZr)T c 
(33) 

The nondimensional isentropic sound speed is ae = ae/a, hence, from (23), 

it can be expressed as a2 = 1 + G2T. Other nondimensional parameters will 

be introduced as required. Prom (16) and (31), the stress response function 

is given by 

5 - G(T - TT) 

f(S,T)={ 8-Si M 

$M 

low strain phase, 

G(T — TT)    unstable phase, 

(8-l)-G(T-TT) high strain phase, 
(34) 

where Sm = Sm(T), SM = ÖM(T). Observe that, for a fixed temperature, the 

stress-strain relation is linear in each phase. Hence, this material will be 

referred to as the trilinear material. The entropy response function, from 

(17) and (31), is given by 

GS +    1 + log 

s(5,T) = { 
G5+(l + log — 

2(m - M) \T-Tc)2 M2 

Q{8-\)+U + \og^r 

low strain phase, 

unstable phase, (35) 

— —       high strain phase. 

15 



where the explicit forms of 8m and 6M given by (30) were used. The jump 

conditions for the special thermoelastic material when the high strain phase 

is on the right of the phase boundary (and the low strain phase on its left) 

are, from (13), (14), (28), (31), (34) and (35), given by 

(l-v2)[5]-l-Gpl = 0, 

|G(T)M + [71 - (V) - ±) - GTT - JrJ v = 0 , 

{ G ([<$]-!) +log 
T+ 

-£}v<0. 
TT)    ~      ) 

(36) 

Similar expressions can be obtained when the low strain phase is on the right 

of the phase boundary. Using (36)i in (36)2 to eliminate {6} gives 

ri(v)lT]2 + r2(v,T')lT] + r3(v,<T,T) = 0 , (37) 

where 

ri(v) = 

r2(v,T) = 

r3M,T) = 

G2v 

—v 

2(1 - v2) ' 

(ae)
2-v2 

1-v2 

1-v2 GT-±-(1-V
2
)(S-± + GTT + IT 

(38) 

The dependence of r2 on T is implicit in the isentropic sound speed. 

16 



3    Augmented theory 

3.1    Motivation. 

Although the classical thermoelastic theory of phase transitions has room 

for—and, in fact, requires—a kinetic relation, such a piece of constitutive 

information is introduced in the theory, in a sense, as a supplement. Some 

other theories have built-in features from which the equivalent of a kinetic 

relation can be derived. In fact, FRIED &; GURTIN [14] argue that a kinetic 

relation is not part of the constitutive theory but follows as a consequence 

of new balance principles. Here, nevertheless, a viewpoint consistent with 

ABEYARATNE & KNOWLES [1] is taken. An augmented theory that includes 

viscosity, strain gradient and heat conduction is introduced. In the next 

section, from an admissibility criterion for a special class of solutions, namely 

traveling waves, a special kinetic relation in the thermomechanical case is 

derived. This procedure follows well established techniques used in fluid 

and solid mechanics (see ABEYARATNE & KNOWLES [2], HATTORI [17], 

ROSAKIS [22], SLEMROD [24, 25], TRUSKINOVSKY [27]) 

By using the classical form of the balance principles and enforcing the 

second law of thermodynamics for all admissible processes, GURTIN [16], 

generalizing a result established by COLEMAN & NOLL [10], proved that the 

Helmholtz potential cannot depend on higher order derivatives of the strain. 

In order to obtain a thermodynamically consistent theory that includes strain 

gradient and viscosity effects, DUNN & SERRIN [12] proposed a modification 

of the energy balance to take into account long range interactions by intro- 

ducing the concept of interstitial working. An alternative approach is used by 

17 



TRUSKINOVSKY [27]. In this section, DUNN & SERRIN'S model is specialized 

for the one-dimensional case. 

3.2    Basic equations. 

In the regularized theory, one introduces from the onset a new fundamental 

quantity called the interstitial working p by DUNN & SERRIN. AS in the 

classical theory of Section 2, the momentum equation is given by (1), but by 

introducing the interstitial working p and considering heat conduction, the 

energy equation is 

[«+I-+C-1 £*/>(<+?")*■ (39) 

The Clausius-Duhem inequality (dissipation inequality) has the same form 

as in the classical theory with heat conduction, i.e., 

d   fx- 

•"»-si IQ X2 

prjdx -   jj      > 0 . (40) 
*i 

At points where the field quantities have enough differentiability, the lo- 

cal form of the balance of linear momentum, the energy equation and the 

Clausius-Duhem inequality are 

ox = pvt , (41) 

(av + q + p)x = p(e + ^v2J   , (42) 

(f),<P*, (43) 

18 



and the compatibility equation is 

«x = It ■ (44) 

Using (41) in (42) provides 

<rvx + qx+px = pet . (45) 

Furthermore, expanding the dissipation inequality (43) and using the expres- 

sion of qx provided by the energy equation (45) yields, in terms of the free 

energy potential ip, 

p(ilh + OtV) -wx-px-^<0. (46) 

In order to introduce higher gradient effects into the theory, it is assumed 

that tp, p, 77, a, q are given by functions V>, p, fj, a, q of y,0,jx,jxx,9x and 

7t. All functional depend on the same set of variables since there is no a 

priori reason to discard any of them. Nevertheless, some restrictions arise in 

connection with the second law of thermodynamics. 

3.3    Thermodynamic restrictions. 

The previous constitutive assumption is compatible with thermodynamics if 

every admissible thermodynamic process satisfies the dissipation inequality 

(46).   This requirement restricts the functional form of ■0, p, fj, a and q. 

19 



Equations (46) and (44) provide 

^77t + (Ä + i))0t + ^ixlxt + $yxx7xxt + Üejxt + i>ltltt o"7t 

q9x 
~ {Pilx + PeOx + Plxlxx + Pixxlxxx + Pejxx + Pltlxt) - -J- < 0 . 

This inequality has to be satisfied for all deformations and all temperatures 

at any point (x, t). It is possible to find a deformation and a temperature 

field for which, at a given point (x,t), the quantities Qt,lxulxxt,Qxultt-,lxxx 

and 8XX are independent of the values of "f,0,^x,^xx,6x and jt at the same 

point. Therefore, in order to satisfy the dissipation inequality, the following 

terms must vanish: 

$0 + f) = 0 ,    (4lx - plt = 0 , (47) 

*Y»=0,    ^=0,    ^=0, (48) 

P7**=0,    Pex=0. (49) 

The formal role of the interstitial working and the connection between the 

viscosity and the strain gradient can be observed from (47) 2- Without the 

interstitial working term or without a dependence of the interstitial working 

on 7t, then the Helmholtz potential would not be a function of 7X. In view 

of (47)-(49), the dissipation inequality reduces to 

pitft - <?7t - (Pilx + PeOx + Plxlxx) - -j- < 0 • (50) 

Equation (48) implies that the free energy cannot depend on these variables, 

hence tp = ^(^f,0,^x). Similarly, (49) implies that p = p(7.0>7x,7t)- Notice 

20 



that (47)i corresponds to the same relation between entropy and free energy 

as in the classical theory. Since -ip does not depend on 7$, then (47) 2 can be 

integrated, i.e., 

P(7» #> 7x, It) = P^7x(7,0,7x)7t + P°(7, #> 7x) , (51) 

where p° is the equilibrium part of the interstitial work. Using this expression 

for the interstitial working in the dissipation inequality (50) gives 

{p [^ - (^7x) J - a} 7t - (p°e + IJ 0X - (p?7x + P?x7xx) < 0 . 
(52) 

The third term in this inequality is independent of 6X and 7t; therefore, it 

should satisfy p°(7,#,7x)7x + PL (7, #, 7x)7xx > 0, for all 7>#>7x,7xx- Since 

7ZZ can be specified independently of 7,6, jx then, necessarily, p°x = 0, but 

then p° is independent of 7l and the same inequality implies p° = 0. There- 

fore, p° can only be a function of 9 and the dissipation inequality (52) becomes 

[p [^ - (^) J - *} 7t - (p£ + |) Ö, < 0 . (53) 

The equilibrium values of a and q can be obtained by replacing 6X and 7< 

by h6x and /17t respectively and taking the limit h -» 0 in the dissipation 

inequality (53), i.e., 

[p [^ - (^) J - <req} 7t -(p°e + ^f)ex<0, (54) 

21 



where aeq = £(7,6,7X, 0,0) and qeq = «7(7,6,7X, 0,0). Since the first term in 

(54) is linear in 7t and the second is linear in 6X, then the equilibrium stress 

is given by 

V>7-(^)J   , (55) Ceq = P 

and the equilibrium heat is 

<?eq = -P°6e  . (56) 

For elastic materials where T/J and g are independent of 7*, the first term of 

the dissipation inequality (53) is linear in 7t, hence the elastic part of the 

stress is completely determined by the free energy as 

<7ei=p   V>7- (V>7*)J    • (57) 

Notice that the elastic stress is equal to the equilibrium stress (when 6X = 0). 

Define the viscous stress as erv = a — ae\ and the "non-equilibrium" heat flux 

as <7„e = q—qeq- In the general case, the elastic stress can be obtained from the 

Helmholtz free energy, but for the viscous stress an additional constitutive 

assumption is required. Returning to the general case, using the expression 

(57) for the elastic stress and the definitions of the viscous stress and the 

non-equilibrium heat flux, the dissipation inequality (53) can be expressed 

as 

<?v7t + —j- > ° • 
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Moreover, the balance of linear momentum (41) now takes the form 

p ipy - (V>7l) ]   + (ffy)x - pvt = 0 • (58) 

The energy equation (45), with the use of (15), (47)i and (51), yields 

<3"7t + P ($fc)   7t + Ä + Qx = P^lt + pOfjt ■ 

From the decomposition of the stress into its elastic and viscous parts and the 

heat flux into its equilibrium and non-equilibrium parts, the energy equation 

now becomes 

o,lt-{fe)xe + {qne)x = pOf,t. (59) 

This is the classical energy equation with two additional terms: the work 

done by the viscous stress (0^74) and the interstitial working term (p°9)x 9. 

Moreover, only the non-equilibrium part of the heat flux is present. 

3.4    Specific constitutive assumptions. 

Introduce the following constitutive assumptions: Assume that the Helmholtz 

potential is of the form 

^(7,0,7*) = ^(7,0) + ^, (60) 

where A is the strain gradient coefficient. This coefficient is formally analo- 

gous to the concept of capillarity in fluid mechanics. Moreover, assume that 
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the viscous stress is given by 

0V = pvit , (61) 

where v is the viscosity, and, finally, assume that the equilibrium heat flux 

is zero and the non-equilibrium heat flux is only a linear function of 6X (i.e., 

Fourier's law2) 

0x) = <7ne(0s) = k6x , (62) 

where k is the thermal conductivity. For simplicity, the strain gradient co- 

efficient, viscosity and thermal conductivity are assumed constant for all 

phases. Notice that the viscous stress is assumed as a function of 7* only and 

the non-equilibrium heat flux as a function of 6X only. These assumptions 

are consistent with the thermodynamical restrictions. The internal energy 

of the regularized theory is e = £(7,9, 7X) = ^(7,6,7^) — #^0(7, 0,7X) which, 

by (60), can be expressed as 

e = e(7,0,7x) = e(7,0) + ^\72, (63) 

where £(7,6) = ^(7,6) — Oipoil, &)■ Moreover, since the equilibrium heat flux 

is zero, then, from (56), it follows that the equilibrium part of the interstitial 

work, p°, can at most be a constant. Since the energy equation and the 

dissipation inequality only involve derivatives of p° then, without loss of 

2Recall that in the linear theory (linearized about a reference temperature), the heat 
flux can only depend linearly on the temperature gradient (see, e.g., CARLSON [7]). 
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generality for a material that follows Fourier's law, one can take p° = 0. 

With assumptions (60)-(62) enforced, the stress becomes 

£(7.0>7x*,7t) = p[$7(7.0)-A7xx + i'7t]  ' (64) 

the balance of linear momentum (58) takes the form 

(■tp1)x- ^Ixxx + Vlxt-Vt = 0 , (65) 

and the energy equation (59) reduces to 

nf + -0xx + ö{^e)t = 0. (66) 

Recall that the strain and particle velocity are related through (44). The 

dissipation inequality (53) can be expressed as 

PH + -/x > 0 , (67) 

which is satisfied if u > 0 and A; > 0. By setting v = X = 0 in equa- 

tions (65) and (66), one recovers the corresponding equations for a classical 

thermoelastic material with heat conduction. 
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4    Structured wave: Viscosity, strain gradient 

and heat conduction 

4.1    Generalities. 

The traveling wave problem is analyzed here within the context of the aug- 

mented theory. There are several possibilities for connecting the augmented 

theory of Section 3 to the sharp interface theory of Section 2. The three 

structuring mechanisms are related to viscous, strain gradient and heat con- 

duction effects. The case when the viscosity and strain gradient coefficient 

are assumed small (in a sense to be specified) is analyzed and it is shown that 

a kinetic relation can be inherited when A, v, k —> 0 and that the augmented 

theory reduces to the sharp interface theory. As a motivation for the use of 

viscous and strain gradient effects, it was shown in [28] that when the only 

structuring mechanism is heat conductivity, only supersonic traveling waves 

can be achieved and no kinetic relation can be derived. It is also important 

to remark that the presence of heat conduction induces some structure to the 

phase boundary but, more significantly, it permits specification of different 

temperatures at +00 and —00. This in turn allows an appropriate connection 

with the adiabatic limit case. 

After introducing some general features of a structured traveling wave 

in Section 4.2, the basic equations are developed in Section 4.3. Classical 

techniques of singular perturbation theory3 are then used to identify the re- 

gion where the viscosity and strain gradient play an important role (i.e., 

3See, e.g., KEVORKIAN & COLE [18], WHITHAM [29]. 

26 



the "inner" solution) and the region where heat conduction is the relevant 

structuring mechanism (i.e., the "outer" solution). A uniformly valid ap- 

proximation is then obtained from the asymptotic matching of the inner and 

outer solutions and a kinetic relation of the form (29) is derived for a subsonic 

traveling phase boundary. 

4.2    Traveling wave: Preliminaries. 

A steady, structured traveling wave corresponds to the case when all fields 

satisfy (41)-(44) and depend only on the variable £ = x - st, where s, the 

wave speed, is a constant. A moving discontinuity can be viewed, within the 

context of the adiabatic, sharp interface theory, as the limit of a structured 

wave within the framework of the augmented theory. Hence, in an infinitely 

long bar, the conditions at ±00 for a structured wave in the augmented theory 

should correspond to the front and back states of a moving discontinuity in 

the theory without augmentation. The precise statement of the traveling 

wave problem will be given in Section 4.4. In this section, some general 

characteristics of the traveling wave are recorded for future use. Notice that 

although in the classical theory of Section 2 the function ^ corresponds to 

the Helmholtz free energy, in the augmented theory, the free energy is given 

by V>.  Assume there exists a structured, steady traveling wave for £ € R. 
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Prom (41), (42) and (44) it follows that 

a' + psv' = 0 , (68) 

v' + si = 0 , (69) 

{av)' + q'+p' + ps(e + -v2j=0, (70) 

where (•)' denotes differentiation with respect to £.   Integration of these 

equations yields 

a + psv = H1 , (71) 

v + S7 = H2 , (72) 

av + q+p + ps(t + -v2j = Hz , (73) 

where the Hi are integration constants. Let the conditions at £ —> ±oo be 

given by 

7(-oo) = 7- ,    7(+oo) = 7+ , (74) 

v(—00) = v~ ,    ü(+oo) = t;+ , (75) 

0(-oo) = r ,   0(+oo) = e+ , (76) 
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and all derivatives of these quantities vanish when £ —> ±00. Hence, the 

integration constants must satisfy 

Hi = cr+ + psv+ = o~ + psv~ , (77) 

H2 = v+ + S7+ = v~ + S7" , (78) 

#3 = a
+v+ + ps (e+ + \(v+)2) = <T~v~ + ps (e~ + \(v~)2)  , 

(79) 

where a± = a(j±,6±, 0,0) and e± = ^(7^,0) - 9±Ml±,0±,0). With 

the foregoing constitutive assumptions (60)-(62), the stress er*, given by (64), 

is u± = pt/J7(7
±,^±) and the internal energy e* becomes e* = ■0(7±,ö±) - 

ö±^ö(7±,^±). Therefore, from (77)-(79), the values given in (74)-(76) must 

satisfy the adiabatic jump conditions (9)-(ll).If a traveling wave solution 

exists then, from (59), it necessarily satisfies 

.2  7'2  ,  J" -psrj' = ps v— + k— . 

Integrate from £ -> — 00 to £ —> 00 to get 

,,/2 r°° f     v      0"l -pslv] = J^ps2u^- + kj^, 

where [77] = 77+ - rf = -iße(l+,ö+) + MT>#") • Integrating by parts the 

second term in the integral and using the conditions at ±00 provides 

ß /a>\2 

-piM = /_" I P^Y + * (£)   U > 0 
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To make the connection with the classical adiabatic theory, consider the driv- 

ing traction / given by (26). Thus, the values in (74)-(76) must also satisfy 

fs > 0, which corresponds to the entropy jump inequality (28). The previ- 

ous analysis shows that the field values at £ —> ±oo for the traveling wave 

problem must satisfy all the corresponding jump conditions of the classical 

adiabatic problem. Moreover, the condition for the existence of a traveling 

wave solution for the augmented theory should provide an additional relation 

for the phase boundary velocity s in terms of the driving traction /. 

4.3    Basic equations. 

Evaluate the constants Hi in (71)-(73) using the conditions at an arbitrary 

point £ = £o- These equations can be written as follows: 

a — (70 + ps(v — v0) = 0 , (80) 

(v - v0) + s(7 - 7o) = 0 , (81) 

(av - a0v0) +q-q0 + p-po + ps(e-e0 + -(v2 - v0
2) J = 0 , 

(82) 

where GQ = ö-(7o,0o,7o, ~*7o)> etc-> and 7o = 7(£o)5 etc. The velocity v can 

be eliminated from (80) and (82) by use of (81). The momentum equation 

(80) becomes 

■2 „ -2 a - ps2j = «T0 - ps^7o , (83) 
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and the energy equation (82) can be expressed as 

g - q0 + p - po = -s p(e - e0) - ( ?-—■ ) (7 - 7o) (84) 

Alternatively, using the expression for a given by (83), the previous equation 

can be written as 

q-q0+p-po + ps (e - eo) - -77 (7 - 7o)2 ~ -7(7 ~ 7o) 
^ P 

= 0 

(85) 

Equation (85) is therefore a combination of the compatibility, momentum 

and energy equations. Moreover, it is clear that by choosing the conditions 

behind (resp. ahead) a right-traveling wave in (77)-(79), i.e., the "—" side 

(resp. the "+" side), (83) and (85) are also valid with the subscript 0 replaced 

by "-" (resp. by "+") and with q~ = p~ = 0 (resp. q+ = p+ = 0). Using 

the constitutive assumptions (60)-(62), the heat flux q and the interstitial 

work p are, for a traveling wave, given by 

q = k0' ,    p = —psX^' (86) 

From (64) and (63), the stress and the internal energy are given by 

G = p[$1{1,e)-\i'-vsi] 

e = €(7,0) + ^A7'2. 

(87) 

(88) 
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Using (86)-(88) in the governing equations (83) and (85) gives 

A(7" - 7o) + Mi ~ To) " ft(7,0) ~ <MTo, flo)] + S2(T - 7o) = 0 , 

(89) 

(6' -6'0) + s je(7, Ö) - 6(7o, e0) - \A (7'2 - 70
2) 

-^2 (7 - 7o)2 - [^7(7o, e0) - A7o' - ^7o] (7 - 7o)} = 0 .   (90) 

Introduce a new function w = 7'. Equations (89) and (90) can be expressed 

as a system of first order ordinary differential equations: 

i = w, 

w' -w'0 = -- {vs{w - w0) - [ip7(-y,0) ~ ^7(70,60)] + s2(7 - To)} , 

os( X s2 (91) 

0'-e'0 = -f |e(7,9) ~ 6(70,00) - \{w* - tag) - °- (7 - 7o)2 

- [^7(70, öo) - Atu0 - z^s^o] (7 - To)} • 

The following stability analysis, with some modifications, follows from NGAN 

&; TRUSKINOVSKY [20]. Let (7*, w^tf*) be an equilibrium point of this dy- 

namical system. Therefore, from (91) and assuming s ^0, these points 

satisfy the jump conditions of the classical adiabatic theory for a given state 

(7+,0+); see relations (13) and (14). The states at £ —> ±00 given by (74)- 

(76) are equilibrium points. To analyze the nature of the equilibria, consider 
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the linearized system around an equilibrium point, i.e., W = AW, where 

W = (7, w,6) and 

A = 

0 1 

us 

ps_ 

k M* 0 

0 

-iV-^  -y     £ 
ps 

0*P* 99 

(92) 

where ^*7 = 1/^(7*, 0*), V7e = Vv(7*A), V'ee = $99(1*, 0*)- Notice that to 

obtain the term A31, the relation e7 = i/;7 — 0f/>70 was used. The term A33 

was obtained using ZQ — —61JJ00. Let ß = ßit i = 1,2,3, be the eigenvalues of 

A. The characteristic polynomial of A is ß3 - Iiß2 + I2ß — h = 0, where I*, 

i = 1,2,3, are the principal invariants of A. A direct calculation gives, using 

the material parameters introduced in Section 2.2, gives 

h = 
v     pc* 

h = — 

h = 

A 
pc*s 

2        -2 at — s 
pc*v 

+ 1 

K - *2] 

(93) 

(94) 

(95) 

Define 

j      hh      2   3       .   _h     A2 

tl-/3 + "^~~27/l '    t2"~3~~"9~' 
i3 = i2 + 4t| , (96) 

then, when t3 < 0, all three eigenvalues are real and different; when t3 = 0, all 
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eigenvalues are real and two of them are equal and when t3 > 0 one solution is 

real and the two other are complex. The eigenvalues ßi satisfy ßi+ßz+ßs = h 

and ß\ßißz = h, hence if the three eigenvalues are real, and since Ii < 0 

when s > 0, then the three eigenvalues cannot be all positive. Therefore, if 

J3 > 0, the equilibrium saddle point has a two-dimensional stable manifold 

and a one-dimensional unstable manifold. If s < 0, then the equilibrium 

point has a two-dimensional unstable manifold and a one-dimensional stable 

manifold. If h < 0 then the situation is reversed. 

4.4    Traveling phase boundary. 

Since the fields under consideration are piecewise differentiable, the traveling 

phase boundary problem has to be divided into three sub-problems. Suppose 

that the conditions at £ —> +oo correspond to the low strain phase and the 

conditions at £ —>■ -co correspond to the high strain phase. Presumably there 

is an interval, say (0,6), where the points are in the unstable phase. Prom 

the above considerations and in view of the smoothness requirements of the 

traveling wave, the solution must satisfy conditions (74), (76) and the strain, 

strain gradient and temperature must be continuous at £ = 0 and £ = b. 

In particular, 7(0±) = 7m(0o) and 7(6±) = 7M(0&), where the functions 7m 

and 7M are given by (30) and the temperatures 60 = ö(0±) and 6b = #(&*) 

are unknown. Additionally, for the class of traveling waves considered here, 

the phase segregation conditions must be enforced, i.e., the solution must be 

such that the material is in its high strain phase in (—oo, 0), unstable phase 

in (0,5) and low strain phase in (&,+oo). Moreover, the temperature has to 

34 



be below the critical value 6c- These conditions can be expressed as 

-1 < 7(0 < 7M(0(O) for - oo < e < 0 , 

7M(0(O) < 7(0 < 7m(*(fl) for 0 < £ < b , 

7(0 > 7m(0(O) for 6 < ^ < +oo , 

^(0 < Oc for - oo < f < +oo . 

(97) 

Structured phase boundary traveling wave problem: Given one end 

state, say (7~,0~) a£ £ —> —oo, ('or, alternatively, (7+,0+) at £ —)• +oo) find 

all admissible states (7+,0+) a£ £ —>■ +oo in #ie ^ii^/i strain phase such that 

(/y~,6~) and (7+,#+) can be connected via a traveling wave. A connection 

between the end states is achieved if there exist functions 7(0 and 0(£), 

£ G R, that satisfy the phase segregation conditions (97) and the following 

three problems: 

Problem 1: Low strain phase. Suppose that for £ G (—oo,0) the material 

is in its low strain phase. Using the conditions at —oo in system (91) and the 

corresponding expressions of ^(^,8), £(7,6), e~ and a~ given by equations 

35 



(15)-(17) and (34), the governing equations are 

7 =w, 

w > = _£ {„aw - (a2 - s2)(7 - 7") + aa2(6 - 0~)} , 
A 

* = ~f {I (°2 " ^ (7 " 7_)2 + a°2r (7 " 7_) 

+c(e-e-)-^Y 

subject to the following boundary conditions: 

(98) 

7(_oo) = 7" ,    0(-oo) = e~ ,    V(-oo) = 0 , 

7(0") = 7o = lc + M(90 - Be) ,    [60 = 0(0")]. 

(99) 

(100) 

The temperature 60 is not known a priori. 
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Problem 2:    Unstable phase. Suppose that for £ € (0, b) the material is in 

its unstable phase. The governing equations are 

7 =w, 

w' = --< vsw - (a2 - s2)(7 - 7") + aa2(9 - 9~) 

27r(7'- 7M(6))\ 
+a 7mW - 1M{9) / ' 

(101) 

e'= ~PT {\(fl2" '2) (7 " 7_)2 + aa2°~(7 ~ 7_) + c(ö ~n~\ 
■(20-0c)(7-7c)2 

Q27r 

'2(M-m) (0 - OcY 
- M29c - 2M(7 - 7c) }■ 

subject to the following initial conditions: 

7(0+) = 7o = 1c + M(90 - 9C) ,    9{0+) = 90 , 

7'(0+) = 7'(0-) . 

(102) 

(103) 
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Problem 3:    High strain phase. Suppose that for £ € (b, +00) the material 

is in its high strain phase. The governing equations are 

7 =w, 

w' = -I [vsw - (a2 - s2)(7 - 7+) + <*a?(9 ~ 0+)} , 
A 

9' = -f{\ («2 - **) (7 " 7+)2 + <™20+(7 " 7+) 

+c(e-e+)-±w*y 

subject to the following boundary conditions: 

7(6+) = 76 = lc + m(0t - ec) ,     [06 s 0(6+)], 

7(+oo) = 7+ ,    0(+oo) = 6+ ,    Y(+oo) = 0 , 

7'(6+) = 7'(n = 76 • 

(104) 

(105) 

(106) 

(107) 

The temperature 8b, the strain gradient 7^ and the width of the unstable 

phase b are unknown a priori. 

4.5    Nondimensional parameters. 

It is convenient to introduce a length parameter based on the viscosity and 

strain gradient coefficient and to use it to obtain nondimensional equations. 

Recall that the viscosity is given in terms of L2T~X, where L is length and 
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T is time, and the strain gradient coefficient in terms of L T   . Let 

oca v k 
Z= —f ,      U=-=  ,      ZS = 

k \/Ä ' pcVX ' 

Therefore, the system (98) can be expressed as 

<5' = w, 

w' = -uwwj + w2 [(1 - v2){6 - <T) - G(T - T-)] , 

(108) 

r' = -v{^(i-v2)(5-n2 + GT-(5-r) + (r-r-)-^w2}, 

where (•)' = d/dz. The boundary condition at z = 0 is 

5(0) = 6C + M(T(0)-Tc). (109) 

The nondimensional expression for the unstable phase will be given in sec- 

tion 4.6. The system (104) can be written as 

w' = -uwvw + w2 [(1 - v2)(<5 - 6+) - G(T - T+)] , 

(110) 

T> = -v{l(l-v2)(ö-6+)2 + GT+(5-6+) + (T-T+)-^yy 
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and the boundary condition (105) at z = b is 

5(b) = 5C + m(T(b) - Tc) (111) 

The boundary condition (107) will be analyzed in Section 4.7. The dimen- 

sionless driving traction is defined as 

f = -M<T> = ^! 

hence, if the conditions at +oo correspond to the high strain phase, then, 

from (35), 

f =- G(M-l) + log^-|- (T) (112) 

From (108) 2, the temperature can be written in terms of the strain and its 

derivatives as 

T(z) - T- = - (1 - v2)(5(z) - S-) - -^W(z) - -V(z) 
w w- 

(113) 

hence, equation (108)3 can be expressed as a single equation for the strain, 

i.e., 

5'" - hs"+\26' - h(s - o + Y [oo2 - ^2(i - v2) (<* - s-y = 0 

(114) 

A similar equation can be obtained for the high strain phase. 
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4.6    Perturbation analysis. 

To obtain an approximation of the solution in the metastable phases, consider 

a singular perturbation of the equations. Let 

_ 1_ 
w 

and consider the case where A<1 ,i/«l but the ratio u remains fixed. 

Hence, assume that e is a small parameter. For definiteness, the analysis is 

carried out for the low strain phase (it is formally the same for the high strain 

phase). As a general scheme of notation in this section, an overbar represents 

a quantity related to the inner expansion whereas a quantity without an 

overbar usually represents a value related to the outer expansion. A prime 

denotes differentiation with respect to the outer coordinate and a dot denotes 

differentiation with respect to the inner coordinate. 

Outer solution 

Assume that the asymptotic expansion for 8 corresponds to a power series in 

e for fixed z^O, i.e., 

S(z) - 8~ ~ 0o(z) + e<f>i(z) + ...    as e -> 0 . 

This corresponds to the outer solution. Using this representation for S in 

equation (114), collecting terms in powers of e and setting each of the coef- 

ficients equal to zero gives, for the first term, 

4>o = i"20o + ro^o ' 
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where r2 is defined by (38) and 

Gv 
ro(v) = -y • (115) 

There axe two functions that satisfy the equation for 4>Q (one of them being the 

trivial solution). For the nontrivial solution the first term of the expansion 

is given by 

<Mz) = — i -Co exp[-r2z] - l\      , (116) 

where CQ is a constant. In order to enforce the condition that </>o(z) —>• 0 

as z —> — oo, it is required that r2 = r2(v, T~) > 0 in the low strain phase, 

but no further restriction is placed upon CQ. For the high strain phase the 

restriction is that r2 = r2(v,T+) < 0. Observe that Vn E N, ^(z) -» 0 as 

z —^ — oo. The same occurs for z —»■ +oo. Formally, the strain gradient is 

given by 5'(z) ~ ^0(
z) + • • • > and the temperature is given, from (113), by 

T(z) - T-~ i^Mz) + ... ; (117) 

therefore, the boundary condition T(z) — T~ -» 0 as z —> —oo is satisfied. 

Inner solution. 

For the inner solution (close to z = 0), consider a new coordinate defined as 

z 
X = - = wz 

e 
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Assume the following asymptotic expansion for fixed x: 

<J(x)-<T~^o(x) + e&(x) + ... . 

Proceeding as in the previous section, the equation to determine the first 

term of the expansion is, from (114), 

0o + vu;Jo-(l-v2)0o = O . 

The solution 4>Q is given by the sum of two exponentials plus a constant. The 
± 

exponents are ßx, where 

ß = h-vu ± s/vW + 4(1 - v2)) . (118) 

The exponents can be either real or complex. For the subsonic range (sub- 

sonic with respect to the isothermal sound speed), the exponents are real: 
+ - ± 
ß > 0, ß < 0 for 0 < v < 1 and ß > 0 for -1 < v < 0. In the low strain 

phase (where x < 0), since the inner and outer solution must match in some 

region (as explained below), the exponential(s) with negative exponent(s)— 

which would provide an unbounded term in the limit—should be discarded. 

For the high strain phase, the solution with positive exponent(s) should be 

abandoned. If both exponents have the appropriate sign, then, in general, 

0o(x) = coe^ + cie^ + c2. (119) 

Notice that, from (96) in nondimensional form, the eigenvalues of the system 

linearized about the equilibrium point for the metastable phases are real and 
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different if 
1 

-^(1-v2)2 [vV + 4(1-v2)] + 0(e) <0, 
27 

i.e., if v2u;2 + 4(1 — v2) > 0 for small e. Therefore, for small e, the equilib- 

rium points of the systems (108) (low strain phase) and (110) (high strain 

phase) have a two-dimensional stable manifold and a one-dimensional un- 

stable manifold for 0 < v < 1 and a one-dimensional stable manifold and a 

two-dimensional unstable manifold for — 1 < v < 0. 

Unstable phase. 

For the unstable phase, the system of equations (101) in nondimensional form 

and expressed in inner coordinates becomes 

5 = w, 

w = —wvw + (i-v2)(<s-r)-G(T-r-) + S-6C-M(T-TC) 
(M-m)(T-Tc)  , 

T = - il (! " v2) (s ~ O2 + £T-(6 - S-) + (T- T~) zu (4 
\2T-Tc){5-5cf 

(120) 

2(M-m)L        (T-Tc¥ 
- WTC - 2M(5 - 5C) 

w2 

} 
Assuming that the strain, strain gradient and the temperature are bounded 

throughout the unstable phase, it is possible to conclude from (120)3 that 

T(x)-T0 = O(e), 
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where To is the (unknown) value of the temperature at x = 0.  Therefore, 

assuming that 

6{x) - 5~ ~ 4>0(x) + e4>i{x) + ... , 

equations (120)i,2 give, for the first term, 

0O(x) + u;v0o(x) + ki4>0(x) + k2 = 0 , 

where 

*! = - (l-v2) + 

k2 = G(T0-T-)- 

(M-m)(T0-rc). 
S--8C-M(T0-TC) 

(M-m)(r0-Tc) 

(121) 

Hence, 

& AX -L T^pß**  -  ^ </>o(x) = c?ep«x + c£e* 
*i ' 

(122) 

where 

^ = ^(-vw±Vv2a;2-4A:1) (123) 

Notice that the exponents can be either real or complex.   The following 

quantities will be useful in the foregoing analysis: 

+ 
P(V) =ß-ß= y/v2U)2 + 4(1 - V2)  , 

+ (124) 
Q(v,r0) =ßu-ßu = VW^4fci 
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4.7    Subsonic case. 

To obtain a uniformly valid approximation of the solution in the metastable 

phases, the inner and outer solutions must match. For the subsonic case 

(subsonic with respect to the isothermal sound speed) the regions where the 

different approximations are valid are shown in Figure 2. 

Low strain phase. 

Suppose that 0 < v < 1.   From (38)2 it follows that r2(v,T±) < 0, hence 

the nontrivial outer solution for the low strain phase has to be abandoned in 
+ 

favor of the trivial solution. Furthermore, since ß > 0 and ß < 0, the inner 

solution for the low strain phase involves, up to 0(e), only the exponential 
+ 

with exponent ßx. From (119), the inner solution is given by 

<S(x) - 5- = <&>(x) + 0(e) , (125) 

+ 
where <f>o(x) = c^e^ + c2. Before enforcing the boundary condition at x = 0, 

it is convenient first to analyze the restrictions imposed by the asymptotic 

matching of the inner and outer solutions.  The inner expansion, rewritten 

in outer variables (i.e., z) and expanded for small e and fixed z is given by 

c2 +    The one-term outer expansion of the one-term inner expansion 

rewritten in inner coordinates is, clearly, c2. For this expansion to match the 

(trivial) outer expansion, it is required that 

c2 = 0 . (126) 
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The temperature can be expressed, from (113) in inner coordinates, as 

T(x) ~ T~ = G 
(1 - v2)(5(x) - r) - wv<j(x) - 5(x) (127) 

The strain and the temperature at x = 0 are related through the bound- 

ary condition (109). Prom (125)-(127), the first term of the temperature's 

expansion at x = 0 is 

_1 
G 

(l-v2)0o(O)-Wo(O)-0o(O) = ^(l-v2)c2 = 0, 

and the first term of the strain's expansion at x = 0 is CQ\ hence, from (109) 

and matching coefficients of the same order gives, for the first term, 

c0 = _(T+5c + M(T--Tc) (128) 

Therefore, the strain, strain gradient and the temperature at z = 0 are related 

to the conditions at z —v — oo by 

5(0) - 6~ = Co + 0{e) 

5(0) =ßco + 0(e), 

T(0)-T- = O(e), 

(129) 

where, for given (5 , T ) and v, CQ is given by (128) and ß by (118). Observe 

that the strain gradient is given here with respect to the inner coordinate. 
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In view of the above, the composite expansion for the low strain phase is 

Jfr/e 6(z) - 6~ = coe™6 + 0(e)    for z < 0 . 

Therefore, for given (6 ,T ) and v, the composite expansion for the low 

strain phase is completely determined up to 0(e). 

High strain phase. 

+ 
For the inner solution close to z = b, since ß > 0, the exponential term with 

+ 
exponent ßx is discarded. Hence, the inner solution is 

6(x)-6+ = M*) + 0(e), 

where <fo(x) = cie^x-b) + c2 and b = b/e. The boundary condition (111) at 

x = b relates the strain and the temperature. From (127), expressed for the 

high strain phase, it follows that the lowest order term of the temperature's 

expansion at x = b is 

i [(1 - v2)<Mb) - u;v0o(b) - Jo(b)] = ^(1 - v2)c2 . (130) 

The first term of the strain's expansion at x = b is C\ + c2, hence, using (130), 

the lowest order term in (111) gives 

ci + c2 - (6c - 6+) = m :(l-v2)c2-(Tc-T+) (131) 
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Therefore, the strain, strain gradient and the temperature at x = b are related 

to the conditions at z —> +00 by 

5(b) -6+ = c1 + c2 + 0(e) , 

5(b) = ~ßci +0(e), 

T(B)-T+ = i(l-v2)c2 + 0(e) 

(132) 

In this case, the outer solution is nontrivial and the first term is given by 

(116). For the high strain phase it is convenient to work with z — b instead 

of z. The translation is absorbed by the integration constant CQ. The outer 

expansion, rewritten in inner variables and expanded for small e (with x 

fixed) gives 

'2   +..., 
T2Q) - r0 

where r2 = r2(v, T+). The inner expansion rewritten in outer coordinates, 

expanded for small e (with z fixed) and rewritten in inner coordinates gives 

Ö2 + • • •', hence, for the inner and outer expansion to match asymptotically, 

it is necessary that 

c2 = —^— . (133) 
r2Co - r0 

The one-term composite expansion is obtained by adding the one-term inner 

and outer expansions and subtracting the one-term outer expansion of the 

one-term inner expansion, i.e., 

<J(Z) -5+ = ^ + CKJW' + 0(e) . 
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The temperature in the high strain phase is, from (117), (127) and the above 

expression for the strain, given by 

T(z) - TA 1(1-v») 
T2 

r2coe-r2(z-b) - r0 
+ 0(e) 

Notice that the inner expansion of the temperature is, up to 0(e), a constant 

given by (1/G)(1 - v2)c2. 

Unstable phase. 

Since T0 = T(0") = T~ + 0(e), then, from (122) and enforcing the continuity 

of the strain, strain gradient and temperature at x = 0, it follows that 

Cj ~f~ C2 — -— — CQ , 

^ßu + ^ßu = ßco 

Let 

8U = 8   - T , 

and set 6M = 5M(T ) and 6m = 8m(T ); using the identities 

CQ = 8M- 8   , 
8M -8~ 

ß'ß 

ßußu 

(134) 
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it follows that 

r" — — 
Cl~Q 

0  + 
-Wu-ß) 
ß 

C2 —       - 
1_ 

Q 

' + 
ßu 

'ß 
(ßu ~ ß) 

(8M - 8U) , 

(135) 

where Q = Q(v,T") is given by (124), ß by (118), Su by (134) and (121) 
± 

and ßu by (123). The phase segregation condition at x = b specifies that the 

material is on the interface between the unstable and the high strain phase. 

Since the temperature throughout the unstable phase is essentially constant 

(up to 0(e) ) then, from (122) and up to the leading term, this condition 

corresponds to 

eie
ß^ + <%ePJ> = 8m-8u. (136) 

Now, enforcing continuity of temperature at x = b, gives, from (132)3, 

Using the above expression in (131), the constant c\ becomes 

cx = 8C - 5+ + m(T- - Tc) - j^_(T" - T+) . 

Let 

8t = 1-v2 
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This quantity can be thought of as the strain (in the high strain phase) cor- 

responding to the front state (6+,T~) of an isothermal phase boundary for a 

given back state (8~,T~). The state (6+,T~) can also be viewed as the back 

state of an adiabatic shock wave for a given front state (5~,T~). It is im- 

portant to notice that the strain gradient at (<5+, T~) does not vanish, hence 

this state is not an equilibrium point of the system (110). Using (36) i and 

(137), the constants 01,2 can be expressed as C\ = 8m — 8+ and c~2 = 6+ — 8+. 

The boundary condition (111) was used to determine the asymptotic expan- 

sion in the high strain phase and (136) was obtained by enforcing the phase 

segregation condition for the asymptotic expansion in the unstable phase. 

Therefore, the continuity of the strain at x = b is automatically satisfied 

from the continuity of the temperature. The only remaining condition that 

has not been enforced is the continuity of the strain gradient at x = b (i.e., 

(107)). From the inner expansion for the strain in the high strain phase, it 

follows that 

8(b+) = ~ßci + 0(e) = ß(6m - St) + 0(e) . 

On the other hand, from the asymptotic expansion in the unstable phase, 

one has 

8(b~) = ßj%M + ft,3«ÄB + 0(e) ; 

hence, up to the leading term, the closing condition for the construction of 

a traveling wave is 

ßu%& + Ä,cV«B = ~ß(8m - St) . (138) 

52 



It is possible to prove that 

+- 
Su       ßß 

s — s+    + -   ' m      *      ßJ3u 

In view of the above relation and using (124) and (135), equations (136) and 

(138) can be expressed, after some simplifications, as 

e°6=f^V. (139) 
P + Q, 

and 

c-«*=m      I^M    . (140) 

Since v2 < 1, then P > 0. Thus, if Q > 0, equation (139) has no solution 

since the left-hand side is always greater than the right-hand side for any 

b > 0. Therefore, a necessary condition to obtain a solution is Q — i\Q\. Of 

all the possible roots of (139), only the smallest satisfies the phase segregation 

conditions, hence, choosing the argument of the complex number P + z|Q| to 

be in the interval (0,7r/2), then, from (139), 

b = ~[27r-4arg(P + t|Q|)] . (141) 

The width of the unstable region is therefore determined as a function of the 

velocity and the temperature T~. 

The phase space for the system of equations (108), (110) and (101) is 

53 



(8, 8', T). Figure 3 shows the projection into the 8-T plane of the trajec- 

tory of a traveling wave such that T+ > T~ (in this case v = 0.05). The 

Hugoniot curve T = TH(8), as defined in Section 2.3, is also shown. The 

corresponding wave profiles are shown in Figures 4 (inner coordinates) and 5 

(outer coordinates). These graphs were obtained using the following values: 

G = 0.8, M = 1.4, m = 1.2, 8C = 3.1, TT = 1, Tc = 3, lT = 0.5, u = 1 and 

e = 1/w = 10~5. Similarly, Figures 6, 7 and 8 show a traveling wave such 

that T+ < T~ (in this case v = 0.7). Observe that, in this case, the first 

portion of the wave, from 8+ to 8+, is expansive. 

Kinetic relation. 

As mentioned in Section 4.2, the values (8±,T±,v) are formally related via 

the jump conditions (36)1,2. If equation (141) is used to compute b, then 

(140) can be viewed as an additional restriction on the values of (J^T^v). 

Hence, for a given pair of values (e.g., back state (8~,T~) or front state 

(8+,T+) or other combinations), the system (36)1,2, (141) provides the nec- 

essary restrictions to determine the other three values (e.g., (8+,T+, v), etc.). 

Notice that this relation only holds for 0 < v < 1 and, from the entropy in- 

equality, it is also required that the driving traction should be positive. The 

condition (140) can also be interpreted in terms of the driving traction. To 

this end, the strain 8U can be written, from (140), as 

8U = 8M + 
'M 

1 - (ß/ß) exp[-vu;b/2] 
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Therefore, from (121), (134) and (137), the strains S and 6+ can be ex- 

pressed as 

and 

(1-v2) \dM -SmJ 

Hence, formally, since b is a function of v and T~ and Sm and SM are functions 

of T~, then 6U = <5u(v, T~) and S~ = 6~(v, T~). Using this expression for S~ 

in (37), the temperature T+ can be obtained as a function of v and T~. The 

strain 5+ in the high strain phase can be determined from (36) i. Finally, 

from (112), it is possible to obtain a kinetic relation of the form (29), i.e., 

f = f(v,T"). 

It is also possible to use T+ as a reference temperature by solving for T~ 

and S± for given T+ in which case f = f(v, T+). Several kinetic curves, cor- 

responding to different values of u and a common value of T+ = 1.5 are 

shown in Figure 9. The last point of each curve (for maximum v) corre- 

sponds to the limit 5+ = Sm as required by the phase segregation condition 

(97)3. All curves have a common value at v = 0 (the parameter u is always 

multiplied by v in the equations). Observe that for small enough values of 

u>, the corresponding kinetic curve is non monotonic. Relations of this kind 

have recently been considered by ROSAKIS & KNOWLES [23] in a purely 

mechanical context. It is interesting to point out that setting v = 0 in (108), 

(110) and (120) results in T(z) being constant, which is different from the 

limit v —> 0 in the solution obtained by perturbation analysis. Moreover, the 
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energy jump condition (36)2 and the entropy inequality (36)3 are trivially 

satisfied when v = 0. Figure 10 shows a set of kinetic relations for different 

values of T+ and a common value of u = 1. In this case, for a given velocity 

v, the driving traction decreases for increasing temperature T+—the same 

behavior is observed when T~ is used as a reference temperature. 

The negative velocity case is different than the positive one in the sense 
+ 

that ß and ß have the same sign.   Even though it is possible to obtain a 

uniformly valid expansion for the low strain phase, there seems to be no 

simple way to construct such an expansion for the high strain phase. 

An interesting point that arises from this analysis is that, although it 

is possible to formally cast the admissibility criterion in terms of a kinetic 

relation of the type proposed in [5], there is no simple dependence on the tem- 

perature. The temperature enters the kinetic relation in a somehow arbitrary 

way in the sense that either the temperature in front of a phase boundary or 

the temperature in the back can be used as a reference temperature. This 

fact was also observed by NGAN k. TRUSKINOVSKY [20] in their numerical 

simulations and suggests that the functional form of the kinetic relation in 

the thermoelastic case should be reconsidered. 
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Figure 1: Material phases in the temperature-strain plane. 
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Figure 2: Outer and inner solutions for metastable phases. 
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Figure 3: Projection of the trajectory of a traveling wave from the 6,S',T- 
phase space into the 8, T-plane for T+ > T~. The Hugoniot curve T = TH(6) 
is based at (S+,T+). 
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Figure 4: Strain and temperature wave profiles in inner coordinates for v 
0.05. 
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Figure 5: Strain and temperature wave profiles in outer coordinates for v = 
0.05. 
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Figure 6: Projection of the trajectory of a traveling wave from the 5,6', T- 
phase space into the 5, T-plane for T+ < T~. The Hugoniot curve T = TH(5) 
is based at (5+,T+). 
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Figure 7: Strain and temperature wave profiles in inner coordinates for v = 
0.7. 
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Figure 8: Strain and temperature wave profiles in outer coordinates for v = 
0.7. 
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Figure 9: Kinetic curves for front state temperature T+ = 1.5 and various 
values of the material parameter ui. 
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V 

Figure 10:   Kinetic curves for the material parameter u = 1 and various 
values of the front state temperature T+. 
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